検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 15 件中 1件目~15件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

J-PARC 3GeVシンクロトロンにおける純炭素フォイルによる荷電変換への挑戦

仲野谷 孝充; 吉本 政弘; Saha, P. K.; 竹田 修*; 佐伯 理生二*; 武藤 正義*

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.937 - 941, 2023/11

J-PARC 3GeVシンクロトロン(RCS: Rapid Cycling Synchrotron)では、前段加速器であるリニアックから入射した400MeVのH$$^{-}$$ビームを荷電変換フォイルによりH$$^{+}$$ビームに変換して、3GeVまで加速している。これまでRCSでは、HBCフォイル(Hybrid Boron mixed Carbon stripper foil)とカネカ社製のグラフェン薄膜(GTF: Graphene Thin Film)の2種類を荷電変換フォイルとして使用してきた。HBCフォイルとは100$$mu$$g/cm$$^{2}$$以上の厚い炭素フォイルを安定的に作製するために高エネルギー加速器研究機構(KEK)で開発された手法である。当初はKEKで作製されたフォイルを使用してきたが、2017年からは原子力機構でHBCフォイルの作製を開始し、以来これを使用している。近年、アーク蒸着法では作製が困難と言われてきた厚い純炭素フォイルの成膜に成功した。新たな試みとして、この純炭素フォイルを2023年3月からの利用運転で使用した。結果、HBCフォイルとGTFでは使用時間の経過とともに、荷電変換されずにビームダンプに廃棄されるビーム量の増加傾向が観察されたが、純炭素フォイルではこの傾向がなく、安定的に荷電変換が可能であった。本発表ではこれら3種類の荷電変換フォイルの使用状況について報告する。

論文

J-PARC 3GeVシンクロトロンにおける荷電変換フォイルの最近の使用状況

仲野谷 孝充; 吉本 政弘; Saha, P. K.; 竹田 修*; 佐伯 理生二*; 武藤 正義*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.629 - 633, 2023/01

J-PARC 3GeVシンクロトロン(RCS: Rapid Cycling Synchrotron)では、前段加速器であるリニアックから入射した400MeVのH$$^{-}$$ビームを荷電変換フォイルによりH$$^{+}$$ビームに変換して、3GeVまで加速させている。RCSで主に使用している荷電変換フォイルは、少量のホウ素を炭素棒に添加し、これを電極としてアーク蒸着法により作製したHBCフォイル(Hybrid Boron mixed Carbon stripper foil)である。2017年から原子力機構でフォイルの内作を開始し、2018年以降これを利用運転で使用している。これまでのところフォイルを起因とする大きな問題は生じていない。一方でこの間、RCSのビームパワーは500kWから830kWへと段階的に上昇してきた。出力上昇に伴い、フォイルを支えているSiCファイバーの破断が顕著になってきた。SiCファイバーの破断はビームロスを増やしたり、フォイル回収時の汚染源となる可能性がある。この課題の対策としてより高強度な特性を持つSiCファイバーの使用やSiCファイバーパターンの変更などの対策を検討した。本発表では近年のJ-PARC利用運転でのフォイルの使用状況と課題とその対策ついて報告する。

報告書

加速器装置メンテナンスを安全に進める上での注意点と要領

小野 礼人; 高柳 智弘; 杉田 萌; 植野 智晶*; 堀野 光喜*; 山本 風海; 金正 倫計

JAEA-Technology 2021-044, 53 Pages, 2022/03

JAEA-Technology-2021-044.pdf:43.7MB

大強度陽子加速器施設(J-PARC)の3GeVシンクロトロン加速器には、1MWの大強度ビームを生成するために開発された電磁石用の電源装置が多数配置されている。これらの電源装置は、陽子ビームの軌道制御の要求に合わせて専用に開発されており、多種多様な出力波形の形式、定格仕様、更には異なる筐体のサイズや電源回路で構成されている。J-PARCは、運転を開始してから10年が経過し、経年劣化を原因とする故障から部品の交換や機器の更新の必要性が生じている。それら機器のトラブルを未然に防ぐことが出来れば、ユーザーの利用時間を計画通り確保でき、成果の最大化に資するとともに、さらには加速器を運用する運転員への負担を軽減することができる。メンテナンスとは、機器を正常な状態に保つことであり、メンテナンスによって故障個所や経年劣化部分を早期に発見して整備することにより、機器の寿命を延ばすことが可能である。本報告書では、電磁石電源グループで実施しているメンテナンス作業の事例を基に、メンテナンス時に必要な手続き、資格等が必要な作業とその注意点、作業を安全に行うための手順書、リスクアセスメントといった資料の作成方法等について報告する。

報告書

電磁石電源装置の長期的安定運用を実現する安全安心な維持管理手法の提案

小野 礼人; 高柳 智弘; 植野 智晶*; 堀野 光喜*; 山本 風海; 金正 倫計

JAEA-Technology 2021-005, 40 Pages, 2021/05

JAEA-Technology-2021-005.pdf:4.27MB

大強度陽子加速器施設(J-PARC)の3GeVシンクロトロン加速器には、1MWの大強度ビームを生成するために開発された電磁石用の電源装置が多数配置されている。これらの電源装置は、陽子ビームの軌道制御の要求に合わせて専用に開発されており、多種多様な出力波形の形式,定格仕様、更には異なる筐体のサイズや電源回路で構成されている。J-PARC用に開発されたこれらの電源装置には世界最先端の技術が集約されており、故障が少ない安定した運転、かつ故障時に大きなトラブルに発展しない安全な機器として運用するためには、新しい装置として特徴を良く理解した適切かつ的確な管理により機器装置の性能を維持しなければならない。しかし、それぞれの装置の仕様や機能は異なっており、更には製作メーカーも違っているため、装置の構造・構成・特徴に合わせた維持管理手法が必要である。維持管理の手法は大きく分けて3つのタイプがある。機器・部品の劣化による交換や後継機種への更新を目的とした週・月・年ごとに実施する「メンテナンス」、運転中の装置の状態を常時監視し、異常・異変の有無を確認する「日常点検」、突発的な故障の修理を目的とした「トラブル対応」に分類できる。本報告書では、電磁石電源グループで実施している保守管理の事例を基に、「メンテナンス」、「日常点検」、「トラブル事例」の内容を紹介する。特に、修理などの交換作業を容易にするアイデアを含めた作業管理手法、および装置の構成・構造・特徴に依らない、電源の保守作業時に必要な注意すべき点を整理して報告する。

報告書

安全性と信頼性を備えた加速器用電磁石電源装置の設計モデルの構築

小野 礼人; 高柳 智弘; 植野 智晶*; 堀野 光喜*; 山本 風海; 金正 倫計

JAEA-Technology 2020-023, 40 Pages, 2021/02

JAEA-Technology-2020-023.pdf:2.98MB

大強度陽子加速器施設(J-PARC)の3GeVシンクロトロン加速器には、1MWの大強度ビームを生成するために開発された電磁石用の電源装置が多数配置されている。これらの電源装置は、陽子ビームの軌道制御の要求に合わせて専用に開発されており、多種多様な出力波形の形式、定格仕様、更には異なる筐体のサイズや電源回路で構成されている。3GeVシンクロトロン加速器は運転を開始してから10年が経過し、経年劣化が原因と思われる故障が起きている。そのため、定期的に部品の交換や機器の更新を行っているが、連続運転中の予想しないタイミングで故障が発生してしまうなど完全な対策は難しい。J-PARCは多くのユーザーが研究利用をしており、故障時は速やかな復旧が求められる。しかし、異常検出センサーや設計仕様が電源毎に異なり、確認調査に多くの時間が費やされる状況も生じている。そこで、電源装置毎に専用マニュアルを作成し専用の治工具も用意をしたが、経験の無い症状と状況で発生するトラブルもあり、作業者の経験や知見に頼る対応を取らざるを得なくなっている。この様な状況は、多くの時間と労力を要する原因となり、作業間違いや事故が生じる要因にもなる。電源装置で使用するセンサーなどの電気・電子部品は、多くの部分で共通化が可能である。さらに、異常検出の方法を共有化し基本設計に組み込むことで、トラブル対応マニュアルの共有化と予備品の共通化が可能になる。そして、電源装置の構造を、故障による交換作業を前提にした設計にすることで、効率的、かつ実用性に優れたトラブル対応とメンテナンス手法を構築できる。これらの対応は、安全性と信頼性を確立する電源装置の開発に繋がり、加速器装置全体の稼働率向上にも貢献できる。本報告書では、電源装置の開発において設計思想の共有化と部品の共通化の必要性について述べるとともに、安全性と信頼性の確立に必要な基本設計モデルについて、3GeVシンクロトロン加速器の電磁石用電源装置の開発事例を用いて紹介する。

論文

Recent status of J-PARC rapid cycling synchrotron

山本 風海; Saha, P. K.

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.1045 - 1047, 2018/06

J-PARC 3GeVシンクロトロンは現在500kWの陽子ビームを物質生命科学実験施設に、また750kW相当の粒子数の陽子ビームを主リングシンクロトロンに向けて供給している。J-PARCのような大強度加速器では、わずか0.1%のビームロスでも非常に大きな機器の放射化を引き起こし、トラブルが発生する。そのため、大強度出力での安定な運転を目指し、3GeVシンクロトロンではビーム調整を行い、その結果を基に改善を進めている。近二年では、六極電磁石および補正四極電磁石の改修により、ビーム軌道の不安定化を抑制し、より小さなエミッタンスのビームを主リングに向けて供給できるようになった。また機器の放射化も低い状態を維持したまま運転を継続しており、作業者の被ばくも非常に少なく抑えることに成功している。

論文

Status of the J-PARC 3GeV RCS

金正 倫計

Proceedings of 6th International Particle Accelerator Conference (IPAC '15) (Internet), p.3798 - 3800, 2015/06

J-PARC 3GeVシンクロトロン(RCS)では、物質生命科学実験施設(MLF)、及び50GeVシンクロトロン(MR)でのユーザー運転のために、ビーム運転を実施している。ビーム強度をこれまで徐々に増強し、2015年3月から400kW、4月から500kWでの安定運転を行っている。大強度ビーム試験も実施し、2015年1月10日に、設計値である1MW相当の粒子加速器に成功した。この実験では、1MWでの安定運転に関する課題も明らかにすることができた。これら、RCSの現状について報告する。

論文

Titanium flanged alumina ceramics vacuum duct with low impedance

金正 倫計; 齊藤 芳男*; 壁谷 善三郎*; 荻原 徳男

Vacuum, 81(6), p.808 - 811, 2007/02

 被引用回数:7 パーセンタイル:30.05(Materials Science, Multidisciplinary)

大強度陽子加速器施設3GeVシンクロトロン(J-PARC-RCS)で使用されるアルミナセラミックス真空ダクトの開発に成功した。ダクトは大きく分けて2種類あり、一つは四極電磁石中で使用される直径約378mmの円断面を持つ長さ1.5mのダクトで、もう一つは、偏向電磁石中で使用されるレーストラック断面を持つ長さ約3.5mで15度湾曲したダクトである。これらは、長さ約0.8mのユニットダクトをメタライズとロウ付けにより接合することで実現した。また、ダクト外表面には、ダクト壁抵抗を小さくするために、PR銅電鋳という方法で、銅箔をストライプ上に接合した。さらに、ダクト内面には、壁からの二次電子放出を低減させるために、TiN膜をコーティングした。これらにより、J-PARC-RCSで使用するダクトが実現できた。

論文

Alumina ceramics vacuum duct for the 3GeV-RCS of the J-PARC

金正 倫計; 荻原 徳男; 齊藤 芳男*; 壁谷 善三郎*

Proceedings of 2005 Particle Accelerator Conference (PAC '05) (CD-ROM), p.2604 - 2606, 2005/00

大強度陽子加速器施設3GeVシンクロトロンに使用するセラミックス真空ダクトの開発に成功した。このダクトは2種類に大別される。一つは偏向電磁石用で、レーストラック型の断面形状を有する3.5mの長さで15度湾曲したダクト、もう一つは、四極電磁石に使用される円形断面を有するダクトである。これらは、一体もので製作するのは非常に困難であるため、0.5-0.8mのダクトをメタライズとロウ付けで接合した。外表面には、ダクトのインピーダンスを小さくするために、RFシールドを施し、内表面には、二次電子放出を小さくするために、TiN膜をコーティングした。

論文

$$gamma$$-ray irradiation experiments of collimator key components for the 3GeV-RCS of J-PARC

金正 倫計; 荻原 徳男; 増川 史洋; 竹田 修; 山本 風海; 草野 譲一

Proceedings of 2005 Particle Accelerator Conference (PAC '05) (CD-ROM), p.1309 - 1311, 2005/00

大強度陽子加速器3GeVシンクロトロンで使用するビームコリメータ用に放射線に強い機器の開発に成功した。ターボ分子ポンプは吸収線量が15MGyの$$gamma$$線照射試験に耐え、ステッピングモータは70MGyまで耐えることを確認した。また、PEEK材を用いた電線も10MGy以上の吸収線量でも使用可能であった。一方、ヒートパイプは30kGy以上では使用できないことが明らかとなった。

論文

2.5 MeV electron irradiation effect of alumina ceramics

金正 倫計; 齊藤 芳男*; 西澤 代治*; 道園 真一郎*

Journal of Nuclear Materials, 318, p.307 - 312, 2003/05

 被引用回数:9 パーセンタイル:53.22(Materials Science, Multidisciplinary)

大強度陽子加速器施設の3GeVシンクロトロンでは、渦電流の影響を抑制するために、真空ダクト材料として、アルミナセラミックスの使用を検討している。アルミナセラミックスの放射線照射効果を検討するために、原研高崎研2号加速器を利用して2.5MeVの電子線照射を行っている。これまで1000MGyまで照射したサンプルの抗折強度試験及びアルミナセラミックスとチタンの接合強度試験を行ったので現状を報告する。

論文

J-PARC 3GeVシンクロトロン用荷電変換フォイル温度分布計算

倉持 勝也*; 金正 倫計; 入江 吉郎*; 菅井 勲*; 五十嵐 進*; 荒木田 是夫*; 武田 泰弘*

第14回加速器科学研究発表会報告集, p.637 - 639, 2003/00

J-PARC 3GeVシンクロトロン(RCS)では、3種類の荷電変換フォイルを使用する。1つは、リニアックからのH$$^{-}$$ビームをH$$^{+}$$に変換し、RCSへのビーム入射に利用し、他の2つはH$$^{+}$$に変換されなかったビームをビームダンプへと導くために利用する。ACCSIMで計算された粒子分布をもとにANSYSにより荷電変換フォイルの温度分布を計算したので報告する。

論文

Overview of 3GeV rapid cycle synchrotron for JAERI-KEK joint project

横溝 英明; 3GeV Ring Group

JAERI-Conf 2001-002, p.240 - 245, 2001/03

原研とKEKが共同で進めている大強度陽子加速器計画(統合計画)に使用する3GeVシンクロトロンについて報告する。3GeVシンクロトロンは、繰り返し25Hz運転であり、出力ビーム1MW,入射エネルギー400MeV,出射エネルギー3GeVを目指している。電磁石配列、入出射電磁石配置、コリメータ設計、ハードウェアの仕様の決定など、主要事項を検討し、技術的な課題も含めて実現可能な仕様となるように設計してきている。

論文

Resonant magnet power supply system for the 3GeV synchroton of the JAERI-KEK Joint Project

Zhang, F.; 谷 教夫; 島田 太平; 鈴木 寛光; 横溝 英明

Proceedings of 6th Symposium on Power Supply Technology for Accelerators, p.149 - 155, 2000/11

大強度陽子加速器統合計画において3GeVシンクロトロンが25Hzの速い繰り返しシンクロトロンであり、入射エネルギーが400MeVで1MWの出力ビームパワーを目指している。このような大強度速い繰り返しシンクロトロンを建設するには電磁石電源の設計が重要な成果である。電磁石による巨大な無効電力発生を避けるには共振方式で励磁しなければならない。また機能分離型のため収束磁場と偏向磁場と粒子加速中のトラッキングが要求される。それに将来入射時磁場フラットボトム及び四極磁石トリムの可能性を考える必要もある。現在共振電磁電源のシステム設計がこの数年のR&Dに基づいて完了され、詳細設計が進行中である。ここで共振電源のシステム概要、パラメータ及び基本設計、また制御システム構成、ユーティリティーについて紹介する。

口頭

The Beam diagnostics system in the J-PARC 3 GeV rapid cycling synchrotron

山本 風海; 畠山 衆一郎*

no journal, , 

J-PARC 3GeVシンクロトロン(RCS)は、最大1MWの大強度ビームを下流の中性子実験施設及び主リングシンクロトロンに供給するためビーム調整および利用運転を行っている。RCSのような大強度のハドロン加速器では、僅かな機器の不具合から大量のビームロスが発生し、それが放射線事故に繋がるリスクがある。そのような事態を防ぐために、RCSでは加速器運転中のビームのパラメータと各機器の状態等複数のデータを監視するシステムを構築した。このシステムには、取り出されたビームが通常とは違う形状で中性子ターゲットに入射した際に注意喚起するモニタリング機能が組み込まれている。また、放射線管理システムで常時監視しているエリアモニタ、ガスモニタ等のトレンドデータを加速器装置の各パラメータと一緒に監視できるような画面を構築している。このシステムによって、例えばビームの軌道が冷却水の温度変化に依存して変動し、さらにはそれがダンプの温度や放射線モニタに影響すること等、値に変動があった際にその原因を系統的に確認できるようになった。

15 件中 1件目~15件目を表示
  • 1